3.5.33 \(\int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \, dx\) [433]

3.5.33.1 Optimal result
3.5.33.2 Mathematica [A] (verified)
3.5.33.3 Rubi [A] (verified)
3.5.33.4 Maple [B] (verified)
3.5.33.5 Fricas [A] (verification not implemented)
3.5.33.6 Sympy [F(-1)]
3.5.33.7 Maxima [B] (verification not implemented)
3.5.33.8 Giac [F]
3.5.33.9 Mupad [F(-1)]

3.5.33.1 Optimal result

Integrand size = 25, antiderivative size = 214 \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \, dx=-\frac {3 \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{a^{3/2} d}+\frac {9 \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{2 \sqrt {2} a^{3/2} d}-\frac {\sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}}+\frac {3 \sin (c+d x)}{2 a d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \]

output
-1/2*sin(d*x+c)/d/cos(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(3/2)-3*arcsinh(a^(1/2 
)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^( 
3/2)/d+9/4*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a*se 
c(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^(3/2)/d*2^(1/2)+3/2*s 
in(d*x+c)/a/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2)
 
3.5.33.2 Mathematica [A] (verified)

Time = 0.47 (sec) , antiderivative size = 272, normalized size of antiderivative = 1.27 \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \, dx=\frac {\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (6 \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)+4 \sqrt {1-\sec (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)-9 \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \tan (c+d x)-9 \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sec (c+d x) \tan (c+d x)+6 \arcsin \left (\sqrt {1-\sec (c+d x)}\right ) (1+\sec (c+d x)) \tan (c+d x)+18 \arcsin \left (\sqrt {\sec (c+d x)}\right ) (1+\sec (c+d x)) \tan (c+d x)\right )}{4 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{3/2}} \]

input
Integrate[1/(Cos[c + d*x]^(7/2)*(a + a*Sec[c + d*x])^(3/2)),x]
 
output
(Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(6*Sqrt[1 - Sec[c + d*x]]*Sec[c + d 
*x]^(3/2)*Sin[c + d*x] + 4*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(5/2)*Sin[c 
 + d*x] - 9*Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d 
*x]]]*Tan[c + d*x] - 9*Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 
- Sec[c + d*x]]]*Sec[c + d*x]*Tan[c + d*x] + 6*ArcSin[Sqrt[1 - Sec[c + d*x 
]]]*(1 + Sec[c + d*x])*Tan[c + d*x] + 18*ArcSin[Sqrt[Sec[c + d*x]]]*(1 + S 
ec[c + d*x])*Tan[c + d*x]))/(4*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + d* 
x]))^(3/2))
 
3.5.33.3 Rubi [A] (verified)

Time = 1.19 (sec) , antiderivative size = 203, normalized size of antiderivative = 0.95, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {3042, 4752, 3042, 4303, 27, 3042, 4509, 25, 3042, 4511, 3042, 4288, 222, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(\sec (c+d x) a+a)^{3/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 4303

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {\int \frac {3 \sec ^{\frac {3}{2}}(c+d x) (a-2 a \sec (c+d x))}{2 \sqrt {\sec (c+d x) a+a}}dx}{2 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \int \frac {\sec ^{\frac {3}{2}}(c+d x) (a-2 a \sec (c+d x))}{\sqrt {\sec (c+d x) a+a}}dx}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a-2 a \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 4509

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \left (\frac {\int -\frac {\sqrt {\sec (c+d x)} \left (a^2-2 a^2 \sec (c+d x)\right )}{\sqrt {\sec (c+d x) a+a}}dx}{a}-\frac {2 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \left (-\frac {\int \frac {\sqrt {\sec (c+d x)} \left (a^2-2 a^2 \sec (c+d x)\right )}{\sqrt {\sec (c+d x) a+a}}dx}{a}-\frac {2 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \left (-\frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a^2-2 a^2 \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{a}-\frac {2 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 4511

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \left (-\frac {3 a^2 \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx-2 a \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx}{a}-\frac {2 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \left (-\frac {3 a^2 \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-2 a \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{a}-\frac {2 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 4288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \left (-\frac {3 a^2 \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+\frac {4 a \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}}{a}-\frac {2 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 222

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \left (-\frac {3 a^2 \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {4 a^{3/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{a}-\frac {2 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 4295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \left (-\frac {-\frac {6 a^2 \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}-\frac {4 a^{3/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{a}-\frac {2 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \left (-\frac {\frac {3 \sqrt {2} a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}-\frac {4 a^{3/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{a}-\frac {2 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

input
Int[1/(Cos[c + d*x]^(7/2)*(a + a*Sec[c + d*x])^(3/2)),x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-1/2*(Sec[c + d*x]^(5/2)*Sin[c + d* 
x])/(d*(a + a*Sec[c + d*x])^(3/2)) - (3*(-(((-4*a^(3/2)*ArcSinh[(Sqrt[a]*T 
an[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (3*Sqrt[2]*a^(3/2)*ArcTanh[(Sq 
rt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])] 
)/d)/a) - (2*a*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x] 
])))/(4*a^2))
 

3.5.33.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4303
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-d^2)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d 
*Csc[e + f*x])^(n - 2)/(f*(2*m + 1))), x] + Simp[d^2/(a*b*(2*m + 1))   Int[ 
(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) + a*(m - n 
 + 2)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 
0] && LtQ[m, -1] && GtQ[n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[m])
 

rule 4509
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*d* 
Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(f*(m + n))), 
 x] + Simp[d/(b*(m + n))   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 
 1)*Simp[b*B*(n - 1) + (A*b*(m + n) + a*B*m)*Csc[e + f*x], x], x], x] /; Fr 
eeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] 
&& GtQ[n, 1]
 

rule 4511
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(A*b - 
a*B)/b   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Simp[B/b 
 Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b 
, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
3.5.33.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(403\) vs. \(2(175)=350\).

Time = 2.48 (sec) , antiderivative size = 404, normalized size of antiderivative = 1.89

method result size
default \(\frac {\left (-9 \sqrt {2}\, \cos \left (d x +c \right )^{2} \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+6 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )-6 \cos \left (d x +c \right )^{2} \arctan \left (\frac {\cos \left (d x +c \right )-\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+6 \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}-9 \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {2}\, \cos \left (d x +c \right )+4 \sin \left (d x +c \right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}-6 \cos \left (d x +c \right ) \arctan \left (\frac {\cos \left (d x +c \right )-\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+6 \cos \left (d x +c \right ) \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{4 d \,a^{2} \left (\cos \left (d x +c \right )+1\right )^{2} \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\cos \left (d x +c \right )}}\) \(404\)

input
int(1/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
1/4/d/a^2*(-9*2^(1/2)*cos(d*x+c)^2*arctan(1/2*sin(d*x+c)*2^(1/2)/(cos(d*x+ 
c)+1)/(-1/(cos(d*x+c)+1))^(1/2))+6*(-1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*co 
s(d*x+c)-6*cos(d*x+c)^2*arctan(1/2*(cos(d*x+c)-sin(d*x+c)+1)/(cos(d*x+c)+1 
)/(-1/(cos(d*x+c)+1))^(1/2))+6*arctan(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d 
*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2-9*arctan(1/2*sin(d*x+c)*2 
^(1/2)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*2^(1/2)*cos(d*x+c)+4*sin( 
d*x+c)*(-1/(cos(d*x+c)+1))^(1/2)-6*cos(d*x+c)*arctan(1/2*(cos(d*x+c)-sin(d 
*x+c)+1)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))+6*cos(d*x+c)*arctan(1/2 
*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2)))*(a*( 
1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)^2/(-1/(cos(d*x+c)+1))^(1/2)/cos(d*x+c) 
^(1/2)
 
3.5.33.5 Fricas [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 614, normalized size of antiderivative = 2.87 \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \, dx=\left [\frac {9 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (3 \, \cos \left (d x + c\right ) + 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 6 \, {\left (\cos \left (d x + c\right )^{3} + 2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} + 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{3} + 2 \, a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d \cos \left (d x + c\right )\right )}}, -\frac {9 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) - 2 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (3 \, \cos \left (d x + c\right ) + 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 6 \, {\left (\cos \left (d x + c\right )^{3} + 2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{3} + 2 \, a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d \cos \left (d x + c\right )\right )}}\right ] \]

input
integrate(1/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")
 
output
[1/8*(9*sqrt(2)*(cos(d*x + c)^3 + 2*cos(d*x + c)^2 + cos(d*x + c))*sqrt(a) 
*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos( 
d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d 
*x + c)^2 + 2*cos(d*x + c) + 1)) + 4*sqrt((a*cos(d*x + c) + a)/cos(d*x + c 
))*(3*cos(d*x + c) + 2)*sqrt(cos(d*x + c))*sin(d*x + c) + 6*(cos(d*x + c)^ 
3 + 2*cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)*log((a*cos(d*x + c)^3 + 4*sqr 
t(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 2)*sqrt(cos(d 
*x + c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d* 
x + c)^2)))/(a^2*d*cos(d*x + c)^3 + 2*a^2*d*cos(d*x + c)^2 + a^2*d*cos(d*x 
 + c)), -1/4*(9*sqrt(2)*(cos(d*x + c)^3 + 2*cos(d*x + c)^2 + cos(d*x + c)) 
*sqrt(-a)*arctan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))* 
sqrt(cos(d*x + c))/(a*sin(d*x + c))) - 2*sqrt((a*cos(d*x + c) + a)/cos(d*x 
 + c))*(3*cos(d*x + c) + 2)*sqrt(cos(d*x + c))*sin(d*x + c) + 6*(cos(d*x + 
 c)^3 + 2*cos(d*x + c)^2 + cos(d*x + c))*sqrt(-a)*arctan(2*sqrt(-a)*sqrt(( 
a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d 
*x + c)^2 - a*cos(d*x + c) - 2*a)))/(a^2*d*cos(d*x + c)^3 + 2*a^2*d*cos(d* 
x + c)^2 + a^2*d*cos(d*x + c))]
 
3.5.33.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate(1/cos(d*x+c)**(7/2)/(a+a*sec(d*x+c))**(3/2),x)
 
output
Timed out
 
3.5.33.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 4934 vs. \(2 (175) = 350\).

Time = 0.61 (sec) , antiderivative size = 4934, normalized size of antiderivative = 23.06 \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

input
integrate(1/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")
 
output
-1/4*(12*(sin(4*d*x + 4*c) + 2*sin(2*d*x + 2*c) + 2*sin(3/2*arctan2(sin(2* 
d*x + 2*c), cos(2*d*x + 2*c))) + 2*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2 
*d*x + 2*c))))*cos(7/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 8*(s 
in(5/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - sin(3/4*arctan2(sin( 
2*d*x + 2*c), cos(2*d*x + 2*c))) - 3*sin(1/4*arctan2(sin(2*d*x + 2*c), cos 
(2*d*x + 2*c))))*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4* 
(sin(4*d*x + 4*c) + 2*sin(2*d*x + 2*c) + 2*sin(1/2*arctan2(sin(2*d*x + 2*c 
), cos(2*d*x + 2*c))))*cos(5/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)) 
) - 4*(sin(4*d*x + 4*c) + 2*sin(2*d*x + 2*c) + 2*sin(1/2*arctan2(sin(2*d*x 
 + 2*c), cos(2*d*x + 2*c))))*cos(3/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 
 2*c))) - 12*(sin(4*d*x + 4*c) + 2*sin(2*d*x + 2*c))*cos(1/4*arctan2(sin(2 
*d*x + 2*c), cos(2*d*x + 2*c))) + 3*(sqrt(2)*cos(4*d*x + 4*c)^2 + 4*sqrt(2 
)*cos(2*d*x + 2*c)^2 + 4*sqrt(2)*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d 
*x + 2*c)))^2 + 4*sqrt(2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2* 
c)))^2 + sqrt(2)*sin(4*d*x + 4*c)^2 + 4*sqrt(2)*sin(4*d*x + 4*c)*sin(2*d*x 
 + 2*c) + 4*sqrt(2)*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*sin(3/2*arctan2(sin(2*d 
*x + 2*c), cos(2*d*x + 2*c)))^2 + 4*sqrt(2)*sin(1/2*arctan2(sin(2*d*x + 2* 
c), cos(2*d*x + 2*c)))^2 + 2*(2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*cos(4* 
d*x + 4*c) + 4*(sqrt(2)*cos(4*d*x + 4*c) + 2*sqrt(2)*cos(2*d*x + 2*c) + 2* 
sqrt(2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sqrt(2))...
 
3.5.33.8 Giac [F]

\[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

input
integrate(1/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")
 
output
integrate(1/((a*sec(d*x + c) + a)^(3/2)*cos(d*x + c)^(7/2)), x)
 
3.5.33.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{7/2}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

input
int(1/(cos(c + d*x)^(7/2)*(a + a/cos(c + d*x))^(3/2)),x)
 
output
int(1/(cos(c + d*x)^(7/2)*(a + a/cos(c + d*x))^(3/2)), x)